
1. Introduction

Machine Learning (ML) models are boosting Artificial Intelligence applications in

many domains, such as finance and health care. This is mainly due to their advantage,

in terms of predictive accuracy, with respect to “classic” statistical models. However,

while complex ML models can reach high predictive performance, they have an

intrinsic black-box nature.

This is a problem in regulated industries, as authorities aimed at monitoring the risks

arising from the application of Artificial Intelligence (AI) methods may not validate

them (see, e.g. Joseph (2019) and Bracke et al. (2019)). For example, the application

of AI to credit lending may lead to automated decisions that can classify a company at

risk of default, without explaining the underlying rationale and, therefore, impeding

remedial actions.

Accuracy and explainability are not the only desirable characteristics of a ML model.

The recently proposed European regulation on Artificial Intelligence, the AI Act

(European Commission, 2020), attempts to regulate the use of AI by means of a set of

integrated requirements.

The AI Act introduces a risk-based approach to AI applications, defining an AI risk

taxonomy with four risk categories: unacceptable risk, high risk (the main focus of

this paper), limited risk, and minimal risk. The requirements established for high-risk

applications include sustainability, accuracy, fairness and explainability, which need a

set of metrics that can establish not only whether but also how much the requirements

are satisfied over time. To the best of our knowledge, there exists no such set of
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metrics, yet.

While accuracy, fairness and explainability are concepts relatively well defined in the

literature, “sustainability” is more ambiguous, as it is mostly associated with

environmental aspects. In this paper we align with the English language, so that

“sustainability” means that an AI application will be able to continue over a period of

time, producing output that are impacted neither by extreme data events nor by cyber

data manipulations. But we also mean that an AI application does not create damage

to the environment, through excessive energy consumption and related CO2

emissions.

In this paper, we propose a set of four main metrics, aimed at measuring

Sustainability, Accuracy, Fairness and Explainability (S.A.F.E. in brief), which have

the advantage of being all based on one unifying statistical method: the Lorenz curve.

The Lorenz curve is a well known robust statistical tool, which has been employed to

measure, on one hand, predictive accuracy and, on the other, income and wealth

inequalities. It thus appears as a natural candidate on which to build an integrated set

of trustworthy AI measurement metrics.

Indeed, a recent work by Giudici and Raffinetti (2021) has shown how to measure

Accuracy and Explainability, using the notion of Lorenz Zonoids, based on the

Lorenz Curve. The result is a metric that can, differently from other measures, such as

Shapley values, jointly measure accuracy and explainability; a metric that is also

robust to data variations, being based on the mutual variability, instead on the

variability from the mean, as other measures, such as the Root Mean Squared Error.
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In this paper we extend (Giudici and Raffinetti, 2021) to the measurement of Fairness

and Sustainability, providing an overall joint measure for all S.A.F.E. AI

requirements.

The explainability requirement is fulfilled “by design” through classic statistical

models, such as logistic and linear regression. However, in complex data analysis

problems, classical statistical models may have a limited predictive accuracy, in

comparison with “black-box” ML models, such as neural networks and random

forests. This suggests to empower ML models with post-modelling tools that can

“explain” them.

Recent attempts in this direction, based on the cooperative game theory work

of Shapley (1953), have led to promising applications of explainable AI methods in

finance, among which Bracke et al. (2019) and Bussmann et al. (2020).

Shapley values have the advantage of being agnostic: independent on the underlying

model with which classifications and predictions are computed; but have the

disadvantage of not being normalised and, therefore, difficult to interpret and compare.

To overcome this limitation, Giudici and Raffinetti (2021) proposed Shapley–Lorenz

values, which combine Shapley values with Lorenz Zonoids, obtaining a measure of

the contribution of each explanatory to the predictive accuracy of the response, rather

than to the value of the predictions, as is the case for standard Shapley values.

In this paper we extend Giudici and Raffinetti (2021) and employ Lorenz Zonoids to

build methods useful to measure not only Accuracy and Explainability, but also

Sustainability and Fairness. The extension will allow to develop an integrated
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measurement model for Sustainability, Accuracy, Fairness and Explainability, and a

unified score of AI SAFEty.

The requirement of sustainability implies the model results are stable under variations

in the data and, in particular, when extreme data, resulting from stressed scenarios

and/or from cyber data manipulations, are inserted into the observed data.

To measure the sustainability of AI applications we propose to extend variable

selection methods, available for probabilistic models, to non-probabilistic models,

such as random forests and neural network models, using statistical tests based on the

comparison between the Lorenz Zonoids of the predictions. The extension provides a

model selection criterion for (non-probabilistic) ML models, not available at the

moment. The criterion will lead to the choice of a parsimonious model, more

sustainable than a complex one. The extension will also allow to compare the selected

model with a model that would be obtained when extreme data are artificially injected

into the underlying data.

The condition of fairness requires that the results of AI applications do not present

biases among different population groups.

To measure the fairness of AI applications we propose to derive the Lorenz Zonoids

of the predictions obtained separately for each population group, similarly to what

done for the requirement of sustainability.

The paper is organised as follows: the next section illustrates the proposed

methodology and, in particular, the Lorenz Zonoid tool and the proposed Lorenz

Zonoid comparison tests; Section 3 discusses the empirical findings obtained applying
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our proposal to the available data; finally, Section 4 contains some concluding

remarks.

2. Methodology

Lorenz Zonoids were originally proposed by Koshevoy and Mosler (1996) as a

generalisation of the ROC curve in a multidimensional setting. When referred to the

one-dimensional case, the Lorenz Zonoid coincides with the Gini coefficient, a

measure typically used for representing the income inequality or the wealth inequality

within a nation or a social group (see, e.g Gini (1936)). Both the Gini coefficient and

the Lorenz Zonoid measure statistical dispersion in terms of the mutual variability

among the observations, a metric that is more robust to extreme data than the standard

variability from the mean.

Given a variable Y and n observations, the Lorenz Zonoid can be defined from the

Lorenz and the dual Lorenz curves (see Lorenz (1905)).

The Lorenz curve for a variable Y, denoted with LY, and displayed, from a graphical

view point, as the red curve in Fig. 1(a), is obtained by re-ordering the Y values in a

non-decreasing sense. It is built joining the set of points with

coordinates (i/n,∑j=1iyrj/(nȳ )), for i=1,…,n, where r and ȳ indicate the

(non-decreasing) ranks of Y and the Y mean value, respectively. Similarly, the dual

Lorenz curve of Y, pointed out as LY′ and represented by the blue curve in Fig. 1(b),

is obtained by re-ordering the Y values in a non-increasing sense. Its coordinates are

specified as (i/n,∑j=1iydj/(nȳ )), for i=1,…,n, where d indicates the (non-increasing)

ranks of Y. The area lying between the LY and LY′ curves is the Lorenz Zonoid.
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The Lorenz Zonoid fulfils some attractive properties. An important one is the

“inclusion” of the Lorenz Zonoid of any set of predicted values Yˆ into the Lorenz

Zonoid of the observed response variable Y, graphically depicted in Fig. 1(b). The

“inclusion property” allows to interpret the ratio between the Lorenz Zonoid of a

particular predictor set Yˆ and the Lorenz Zonoid of Y as the mutual variability of the

response “explained” by the predictor variables that give rise to Yˆ, similarly to what

occurs in the well known variance decomposition that gives rise to the R2 measure.

Download: Download high-res image (260KB)

Download: Download full-size image

Fig. 1. [(a)] The Lorenz curve (LY) and the dual Lorenz curve (LY′); [(b)] The

inclusion property LZ(Yˆ)⊂LZ(Y).

A second important property concerns the practical implementation of the Lorenz

Zonoid calculation. It can be shown that the Lorenz Zonoid-value of a generic

variable ⋅ (such as the response variable, or the predicted response variable) is

calculated as(1)LZ(⋅)=2Cov(⋅,r(⋅))nE(⋅),where r(⋅) are the rank-scores

associated with the ⋅ variable and E(⋅) is its expected value.
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Eq. (1) provides an easily implementable manner to calculate a Lorenz Zonoid and,

consequently, the share of Lorenz Zonoid response explained by a model’s predictors.

The properties of the Lorenz Zonoids can be leveraged to provide metrics to assess

the SAFEty of AI applications, as in the following.

Explainability. In Giudici and Raffinetti (2021), the Lorenz Zonoid approach has been

combined with the Shapley framework, to obtain a metric of explainability that

measures the additional contribution of each explanatory variable to the Lorenz

Zonoid of the predictions.

Given K predictors, the Shapley–Lorenz contribution associated with the additional

variable Xk is:(2)LZXk(Yˆ)=∑X′⊆C(X)∖Xk|X′|!(K−|X′|−1)!K!⋅[LZ(YˆX′∪Xk)−L

Z(YˆX′)],where: C(X)∖Xk is the set of all the possible model configurations which

can be obtained excluding variable Xk; |X′| denotes the number of variables included

in each possible model; LZ(YˆX′∪Xk) and LZ(YˆX′) describe the (mutual)

variability of the response variable Y explained by the models which, respectively,

include the X′∪Xk predictors and only the X′ predictors.

The application of formula (2) leads to the Shapley–Lorenz values, a measure of the

response variable mutual variability explained by each predictor, normalised in the

interval [0,1]. Normalisation is an important advantage of the Shapley–Lorenz

measure, with respect to the standard Shapley values. Another important advantage is

that the Shapley–Lorenz measure can be calculated for any ordered response variable

in the same manner, following (1), differently from measures based on the variance

decomposition. And, finally, being based on the mutual variability, it is highly robust
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to extreme observations.

Given a ML model with K predictors, we can thus measure its explainability score as

in the following definition.

Definition 1 Explainability Score

The score for explainability can be calculated on the whole sample as:(3)Ex −

Score=∑k=1KSLkLZ(Y),where LZ(Y) corresponds to the response variable Y Lorenz

Zonoid-value, and SLk denotes the Shapley–Lorenz values associated with the kth

predictor.

Accuracy. The accuracy of the predictions generated by a ML model is crucial for

ensuring trustworthiness of AI applications. The statistical learning literature provides

a large set of accuracy metrics (for a review see, e.g. Hand et al. (2001)): the most

commonly employed are the Root Mean Squared Error (when the response variable is

on a continuous scale) and the Area Under the ROC curve (when the response

variable is on a binary scale). Both are calculated on a test sample of the data,

assuming the model being calculated on the remaining training sample. A more robust

measure is the Lorenz Zonoid, which can be calculated on the test set in the same way

for binary, ordered categorical and continuous responses. This generality is a clear

further advantage of the Lorenz Zonoid.

Given a ML model with k≤K predictors, and a test sample from the dataset, we can

measure its accuracy score as in the following definition.

Definition 2 Accuracy Score

The score for accuracy can be defined as:(4)Ac −
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Score=LZ(YˆX1,…,Xk)LZ(Ytest),where LZ(YˆX1,…,Xk) is the Lorenz Zonoid of

the predicted response variable, obtained using K predictors on the test set,

and LZ(Ytest) is the Y response variable Lorenz Zonoid value computed on the same

test set.

Note that, while the explainability score is calculated on the whole dataset, in line

with its nature, the accuracy score is calculated on the test data set, using the ML

model learned on the train data set.

In this respect, a significance test for the difference in Lorenz Zonoids, which can

extend Diebold and Mariano (1995) for continuous responses and DeLong et al.

(1988) for binary response into a unifying criterion would provide the basis for a

stepwise model comparison algorithm which may lead to a parsimonious model,

with k≤K predictors that, while not significantly losing accuracy, simplifies the

computational effort necessary to measure explainability, which can be applied only

to k rather than K variables. Additionally, a more parsimonious model will likely be

more sustainable: less dependent on data variations.

According to the mentioned saving of computational effort, we suggest a forward

stepwise procedure, which starts with the construction of K models, each one

depending on only one predictor. The application of formula (1) to all such univariate

models will provide a ranking of the candidate predictors, in terms of their (marginal)

importance, which can be used to determine insertion into the model. The first

explanatory variable to be considered is that with the highest Lorenz Zonoid value. At

the second step, a model with also the second ranked variable is fitted and a predictive
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gain, measured as the additional contribution to predictive accuracy determined by the

second variable can be calculated as:(5)pay −

off(Xk)=LZ(YˆX′∪Xk)−LZ(YˆX′),where LZ(YˆX′∪Xk) and LZ(YˆX′) describe the

(mutual) variability of the response variable Y explained by the models which,

respectively, include X′∪Xk predictors or only X′ predictors.

The procedure can continue until the predictive gain defined in (5) is found not

significant. To test for significance, a statistical test can be developed. The

formalisation of the test is reported in Appendix.

Fairness. Fairness is a property that essentially requires that AI applications do not

present biases among different population groups.

To measure fairness we propose to extend the Gini coefficient, originally developed

to measure the concentration of income in a population, to the measurement of the

concentration of the explanatory variables which may be affected by bias, in terms of

the Shapley–Lorenz values.

Our proposal can be illustrated as follows. Let m=1,…,M be the considered

population groups and let K the number of the available predictors. We denote

with vmXkSL the Shapley–Lorenz value associated with the kth predictor in the mth

population.

Suppose that the stepwise procedure based on the application of the Lorenz-Zonoid

test leads to choose only a subset of all the available explanatory variables as the most

contributing to the predictive accuracy of the model. Specifically, we denote with k∗,

where k∗=1,…,k and such that k∗<K, the number of predictors which compose the
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selected model.

With the purpose of measuring the explainability and accuracy provided by each

explanatory variable included into the final model, we consider the

vector VMSL∗ defined as VMSL∗={v1SL∗,…,vmSL∗,…,vMSL∗},

where vmSL∗=vmX1SL+⋯+vmXk∗SL represents the sum of the Shapley–Lorenz

values related to the predictors X1,…,Xk∗.

The Gini coefficient can be applied to the vector VMSL∗, obtaining a measure of

concentration of the variables’ importance among different population groups. For a

given set of selected explanatory variables, Shapley–Lorenz values which are similar

in the M populations lead to a Gini coefficient close to 0, indicating that the effect of

these variables is fair across the different population groups. On the other hand, a Gini

coefficient close to 1 indicates that the variables’ effect largely depend on some

groups, highlighting biasness.

Given a ML model with k∗ and M population groups, we can measure its fairness

score as in the following definition.

Definition 3 Fairness Score

The score for fairness can be defined as:(6)Fair −

Score=1−LZ(VMSL∗),where LZ(VMSL∗) denotes the Lorenz Zonoid (Gini

coefficient) computed on the vector VMSL∗ whose elements correspond to the sum of

the selected predictors’ Shapley–Lorenz values in each population.

Sustainability. The results from a ML model, especially when a large number of

explanatory variables is considered, may be altered by the presence of “extreme” data
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points, deriving from anomalous events, or from cyber data manipulation.

We propose to verify sustainability by comparing predictive accuracy, as measured by

Shapley–Lorenz values, in different ordered subset of the data, possibly altered

artificially by anomalous or cyber manipulated ones.

To this aim, conditionally on a ML model, we can order the predicted response values

(in the test set) in terms of their predictive accuracy, from the most accurate to the

lowest. We can then divide the ordered predictions in g=1,…,G equal size groups

(such as the deciles of the distribution). We can then proceed in analogy with the

fairness case and build a vector including the sum of the Shapley–Lorenz values of

the predictors composing the final model, i.e. VGSL∗={v1SL∗,…,vgSL∗,…,vGSL∗},

where vgSL∗=vgX1SL+⋯+vgXk∗SL represents the sum of the Shapley–Lorenz

values related to the predictors X1,…,Xk∗.

Definition 4 Sustainability Score

The score for sustainability can then be defined as:(7)Sust −

Score=1−LZ(VGSL∗),where LZ(VGSL∗) indicates the Lorenz Zonoid (Gini

coefficient) calculated on the vector VGSL∗, whose elements correspond to the sum

of the selected predictors’ Shapley–Lorenz values in each group.

In the next Section we will apply our proposed methodology in the context of bitcoin

price prediction.

3. Application to bitcoin price prediction

As an illustrative example of how to apply our proposal, we consider a set of

cryptocurrency time series, for the time period between May 18th, 2016 and April



30th, 2018.

3.1. Data description

The considered data are the same described in Giudici and Abu-Hashish (2019) and

in Giudici and Lorenz (2020) to explain bitcoin price variation as a function of the

available financial explanatory variables.

A further investigation of the data was provided in a work by Giudici and Raffinetti

(2021), who introduced a new AI approach resulting in the formalisation of a

normalised measure for the assessment of the contribution of each additional predictor

to the explanation of the bitcoin prices.

For coherence with the previous cited works, here we choose the same time series

observations, with the bitcoin prices from the Coinbase exchange as the target

variable to be predicted. As suggested by Giudici and Lorenz (2020) and Giudici and

Raffinetti (2021), the time series for Oil, Gold and SP500 prices are taken into

account as candidate financial explanatory variables. In line with Giudici and

Abu-Hashish (2019), the exchange rates USD/Yuan and USD/Eur are also included as

possible further explanatory variables.

Our aim is to exploit the Lorenz Zonoid tool as a unified criterion for measuring the

SAFEty of AI methodologies.

3.2. Explorative analysis

We start our explorative analysis of the available data by plotting the time evolution

of bitcoin prices, together with that of the Gold, Oil and SP500 prices and the

exchange rates, in the considered time period. The trends are displayed in Fig. 2, Fig.
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3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, respectively.

Specifically, from Fig. 2 the bitcoin price appears quite stable until the beginning of

2017. But, since the first six months of the 2017 year, bitcoin prices begin to

progressively increase reaching the maximum at the end of the same year. This

dynamics is followed by a downtrend, which starts in January 2018.

While the trend of the SP500 increases overtime (Fig. 3), the prices of Gold and Oil

(Fig. 4, Fig. 5) are characterised by uptrend and downtrend. The former is more

evident at the end of the 2016 year for Gold, while for Oil it occurs some months

before the end of the 2016.

On the other hand, the behaviour of the exchange rates USD/Eur and USD/Yuan is

quite similar overtime, as shown in Fig. 6, Fig. 7.

Download: Download high-res image (186KB)

Download: Download full-size image

Fig. 2. Bitcoin prices.
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Fig. 3. SP500 prices.
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Fig. 4. Gold prices.
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Fig. 5. Oil prices.
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Fig. 6. USD/EUR exchange rate.
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Fig. 7. USD/YUAN exchange rate.

To better understand the dynamics reported in Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig.

7, some summary statistics are reported in Table 1.

The results in Table 1 highlight that the bitcoin price mean value, as well as the

standard deviation and the minimum and maximum values, are largely different with

respect to those of the classical assets and exchange rates. To better appreciate the

volatility magnitude of the prices, the coefficient of variation (cv) is computed and

displayed in Table 1. The findings show that the exchange rates are much less volatile

than the bitcoin, SP500 and Oil prices. Indeed, for USD/Eur and USD/Yuan, the

standard deviations are only 5% and 3% the size of the mean, respectively. A similar

result in terms of volatility is achieved by Gold, whose standard deviation

corresponds to 4% the size of the mean, while for Oil and SP500 the standard

deviations slightly increase reaching values which are less than 10% of the mean.

Table 1. Summary statistics for Coinbase bitcoin, classic asset prices, SP500 index
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and exchange rates (mean, standard deviations (sd), coefficient of variation (cv),

minimum and maximum values).

Prices Mean sd cv Min

Coinbase bitcoin 3919.05 4318.98 1.10 438.38

SP500 2399.17 212.31 0.09 2000.54

Gold 1275.58 52.34 0.04 1128.42

Oil 49.36 3.37 0.07 39.51

USD/Eur 0.88 0.04 0.05 0.80

USD/Yuan 6.68 0.19 0.03 6.27

3.3. Results

The aim of the data analysis is to build an explainable ML model that can predict

bitcoin prices. Before proceeding, we transform all price series into their percentage

returns. This because returns are scale free and the corresponding series are stationary

(see, e.g. Tsay (2005)).

As a ML model we apply, without loss of generality, a neural network with five

hidden layers. We consider as training data the time series until December 31st, 2017;

and as test data the 2018 time series. Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7 show

that it will be difficult to obtain a high predictive accuracy, as the time series trends in

2018 change patterns with respect to the training data series.

In any case, the application of our proposed approach leads to a series of predictions
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for the 2018 return prices that can be compared with the actual returns, to obtain

measures of trustworthiness (S.A.F.E.ty) of the neural network. Fig. 8 shows the

results of such assessment, in graphical format.

Fig. 8(a) shows that the score of explainability of the full model, measured as the sum

of all Shapley–Lorenz values (on all data), is equal to 0.5714, with the Gold price

returns as the highest contributor.
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Fig. 8. Continuous scenario - [(a)] Explainability; [(b)] Accuracy; [(c)] Sustainability;

[(d)] Fairness.

To simplify the model, we have then applied our proposed forward stepwise feature

selection, following the order of the variables, in terms of their Lorenz Zonoid

marginal contribution. The procedure inserts Gold returns, then SP500 returns and

then it stops, as no additions lead to a significantly superior model. Our selected

model, therefore, contains Gold and SP500 returns as predictors of bitcoin prices.

Fig. 8(b) shows the accuracy score of the selected model, in terms of Lorenz Zonoid.

The Lorenz Zonoid gives an accuracy score of 0.3280, which correspond to the

percentage of bitcoin price variability explained by the model (on the test data).

We have then assessed the sustainability score of the selected model. To this aim, we

have ordered the test data response according to how well is predicted by the model

(from the best to the worst predictions) and, accordingly, subdivided it into ten deciles.

We have then calculated the Lorenz Zonoid of the model, separately in each

cumulative decile. The result is shown in Fig. 8(c).

Fig. 8(c) shows that, as expected, the predictions worsen, although not monotonically,

as we increase deciles. Monotonicity does not hold as both the predictions and the

values to be predicted vary along deciles. For example, the model goes relatively well

in the tenth decile because not only the predictions but also the observations are less

variable.

According to our proposal, we can calculate, as a sustainability score, the complement
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of the Gini coefficient of the Lorenz Zonoid. It results to be equal to 0.8314,

indicating a high sustainability.

With the aim of assessing fairness, we have considered, as a potential biasing variable,

the amount traded in each day, and evaluate whether price returns are fair with respect

to it. If not, it will mean that bitcoin returns depend on the trading volumes.

To measure fairness we have ordered the test data response in terms of the

corresponding trading volumes (from the lowest to the highest) and, accordingly,

subdivided it into ten deciles. We have then calculated the Lorenz Zonoid of the

model, separately in each cumulative decile. The result is shown in Fig. 8(d).

Fig. 8(d) indicates that the model has the best performance in correspondence to the

lowest and highest volumes of trading but also that, overall, the variation is limited.

According to our proposal, we have computed as a fairness score, the complement of

the Gini coefficient of the Lorenz Zonoid. It results to be equal to 0.8617, indicating a

high fairness.

To show the universality of our proposal, we have binarised the response variable,

with Y=1 indicating positive returns and Y=0 indicating negative returns, and applied

the same neural network model as before, but to predict a binary, rather than a

continuous response. Fig. 9 shows the results of our S.A.F.E.ty assessment, in

graphical format.

From Fig. 9(a), note that the model presents a lower overall explainability than before:

the overall explainability score is equal to 0.3160. As before, the Gold price return is

the most explainable series.
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Fig. 9. Binarised scenario - [(a)] Explainability; [(b)] Accuracy; [(c)] Sustainability;

[(d)] Fairness.

Our proposed model selection procedure is then carried out exactly as for the

continuous case. The selected model contains SP500 and Gold returns, as in the

continuous scenario. The accuracy score of the model (see Fig. 9(b)) is equal to

0.4088, higher than before, as expected, since the response variable now varies on a

binary, rather than on a continuous scale.

We have finally applied the sustainability and fairness assessments, in the same

manner as for the continuous case. The results are in Figs. 9 (c) and 9 (d),

corresponding to scores of, respectively, 0.8184 and 0.7165. While the sustainability

of the model is similar to that corresponding to the continuous response case, fairness

is lower, indicating that the sign of the returns depend on trading volumes more than

the actual returns do.

To better evaluate our proposal, we now compare it with the most employed

alternative metrics. Specifically: to measure explainability, we compare our Shapley

Lorenz proposal with Shapley values; to measure accuracy, we compare our Lorenz

Zonoid proposal with the AUROC (for the binary response case) and the RMSE (for

the continuous response case); to measure sustainability (and, similarly, fairness) we

employ the Gini index to measure the variability of model accuracy in different

percentiles of the response variable.

In Table 2, Table 3, we report the findings for explainability comparing, for each
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candidate predictor, the Shapley Lorenz values with the Global Shapley values,

obtained summing Shapley values over all statistical units.

From Table 2, Table 3 note that the order of importance of the predictors is the same

using either Shapley Lorenz or Shapley values. However, Shapley Lorenz values have

the advantage of being normalised and, therefore, of being easily interpretable. For

example, in the continuous response case, Shapley Lorenz values lead to the

conclusion that Gold explains about 35% of the predictive accuracy of the model;

about three times more than Oil. Whereas, when Shapley values are considered, the

values are not normalised, and it is much more difficult to interpret ratios between

predictors’ explanations.

Table 2. Shapley–Lorenz values vs Global Shapley values (continuous case).

Predictor Shapley–Lorenz values Global Shapley values

Gold 0.3500 −4.17e−05

SP500 0.1036 −2.04e−05

Oil 0.0123 1.51e−05

USD/Eur 0.0759 6.10e−06

USD/Yuan 0.0237 1.52e−06

Table 3. Shapley–Lorenz values vs Global Shapley values (binarised case).

Predictor Shapley–Lorenz values Global Shapley values
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Predictor Shapley–Lorenz values Global Shapley values

Gold 0.1722 0.0323

SP500 0.0270 0.0023

Oil 0.0591 0.0269

USD/Eur 0.026 −0.0119

USD/Yuan 0.0309 −0.0015

Table 4 reports the findings for explainability comparing our accuracy scores, based

on the Lorenz Zonoid of the selected model, against the Root Mean Squared Error of

the same model (for a continuous response) and the Area Under the ROC curve (for a

binary response).

From Table 4 note that, in the continuous case, the relatively low value of the

accuracy score (about 33% of the total variability) is matched by the high value of

RMSE (about 6% on the return scale). Clearly, the accuracy score is much easier to

interpret. The accuracy score improves (but remains low) when the target response is

binarised, reaching about 41% of the total variability, consistently with an AUROC

equal to about 55%. In the binary case, both measures are normalised, and the

interpretation is quite clear in both cases. We remark that an important advantage of

our accuracy score is its universality: it can be applied regardless the type of the

underlying target variable or model. In our application, this allows to compare the

continuous and the binary case and conclude that the selected model better predicts
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the binarised rather than the continuous bitcoin returns. The traditional metrics,

including RMSE and AUROC, are response specific, are defined on different

measurement scales and do not allow such comparison.

Table 4. Lorenz Zonoid values vs RMSE and AUROC.

Ac-Scoregold,sp500 (continuous case) RMSEgold,sp500

0.3280 0.0586

Ac-Scoresp500,gold (binary case) AUROCsp55,gold

0.4088 0.5493

Fig. 10 and Table 5 report the findings for sustainability, comparing the Gini

coefficient as a measure of variability of the accuracy scores, whether calculated with

the Lorenz Zonoid (for both the binary and continuous response case) the RMSE (for

the continuous case) or the AUROC (for the binary case), all applied to the

cumulative deciles of all observed values of the response variable. The graphical

behaviour of the RMSE and AUROC are displayed in Fig. 10(a) and (b), and should

be compared with Figs. 8 (c) and 9 (c), respectively.

Comparing Fig. 10(a) with Fig. 8(c), it is clear that the RMSE metric is much more

unstable and, therefore, less sustainable, than our proposed Lorenz Zonoid metric.

Whereas, comparing Fig. 10(b) with Fig. 9(c), the AUROC metric seems rather stable,

similarly to our proposed metric.
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Fig. 10. Sustainability comparison [(a)] RMSE (continuous case); [(b)] AUROC

(binary case).

For a more accurate comparison, Table 5 reports the variability scores, all calculated

as the complement of the Gini coefficient, for our Lorenz Zonoid case, the RMSE and

the AUROC.

Table 5 confirms that, for a continuous response, the use of the RMSE metric leads to

an increase of the Gini coefficient and, therefore, a reduction in sustainability.

Whereas, for a binary response, the AUROC metric has a high sustainability,

similarly to our proposed metrics. This result is consistent with the well known

relationship between the AUROC and the Gini coefficient (see e.g. Hand et al.

(2001)). We remark that the universality of our proposal allows to directly compare
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the binary and continuous case, leading to similar values of the Gini coefficient. Such

a comparison is not possible with the other metrics, which are response specific, and

expressed in different scales.

Table 5. Sust-Score based on: Shapley–Lorenz values; RMSE; AUROC.

Continuous case Binary case

Sust-Score (Shapley–Lorenz values) Sust-Score (Shapley–Lorenz values)

0.8314 0.8184

Sust-Score (based on RMSE) Sust-Score (based on AUROC)

0.6597 0.9307

Note that what shown for the sustainability metrics can be replicated, in a similar way,

for our proposed fairness metrics. This in line with the construction of our proposed

fairness score, similar to the sustainability score.

4. Conclusions

The aim of the paper was to provide an integrated set of metrics able to assess the

trustworthiness of AI applications.

The suitability of such metrics can be evaluated relying on the meta-concepts

expressed by the human communities and, in particular, by those contained in the

proposed regulations of Artificial Intelligence, such as the European AI Act. To

provide a set of metrics that satisfy the proposed regulatory principles, we have

extended the application of Lorenz Zonoids to obtain measurement tools for the

Sustainability, Accuracy, Fairness and Explainability, as key S.A.F.E. trustworthiness



criteria.

By means of an easily downloadable dataset of bitcoin prices, and related candidate

predictors, we have provided a practical demonstration of how to implement and

interpret the proposed metrics.

The application of our proposal, and its comparison with alternative metrics, in both

binary and continuous scenarios, and for all ordered deciles of the response variable,

shows that our S.A.F.E. framework is a more suitable metric to assess trustworthy AI

than the available metrics, such as Shapley Values, RMSE and AUROC. This result

derives from the nature of the underlying statistical tool, the Lorenz Zonoid, which

allows to obtain a metric that is independent of the considered response variable, and

which is more robust under data variations.

Our proposed metrics can be easily embedded in a scorecard that can be beneficial to:

asset management companies that need reliable predictions to make investment

decisions; financial authorities and supervisors that need to evaluate AI methods

implemented by the institutions under their supervision; researchers that need to

understand the functioning of financial markets.
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Appendix.

To determine if the predictive gain provided by the predictor additionally included

into the model is significant, a statistical test has to be formalised. To do that

Eq. (5) has to be rewritten in terms of covariance operators as

follows:(8)LZ(YˆX′∪Xk)−LZ(YˆX′)=2Cov(YˆX′∪Xk,r(YˆX′∪Xk))nE(YˆX′∪Xk)

−2Cov(YˆX′,r(YˆX′))nE(YˆX′).

As r(⋅)/n is the empirical transformation of the cumulative distribution

function F(⋅) (see, e.g. Lerman and S. (1984)), the terms in Eq. (8) can be

re-expressed

as:(9)LZ(YˆX′∪Xk)−LZ(YˆX′)=2Cov(YˆX′∪Xk,F(YˆX′∪Xk))E(YˆX′∪Xk)−2Cov

(YˆX′,F(YˆX′))E(YˆX′),where F(YˆX′∪Xk) and F(YˆX′) are the cumulative

distribution functions of YˆX′∪Xk and YˆX′, respectively.

In the case of linear regression, the mean of the predicted response values is always

equal to the mean of the original target values, implying that E(Y)=E(Yˆ). For more

general models, the aforementioned condition does not fully hold, implying

that E(YˆX′∪Xk)=E(YˆX′)=μ becomes a reasonable approximation. Assuming such
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approximation, Eq. (9), which describes the marginal contribution (MC) provided

by Xk, can be simplified as

follows:(10)MC=2Cov(YˆX′∪Xk,F(YˆX′∪Xk))μ−2Cov(YX′,F(YˆX′))μ.

In line with the previous mathematical derivations, we propose γ as an adjusted

version of Eq. (10),

i.e.(11)γ=μ2⋅MC=Cov(YˆX′∪Xk,F(YˆX′∪Xk))−Cov(YˆX′,F(YˆX′)).

By denoting the

covariances Cov(YˆX′∪Xk,F(YˆX′∪Xk))=ξ(YˆX′∪Xk) and Cov(YˆX′,F(YˆX′))=ξ(

YˆX′), γ in (11) can be re-written as:(12)γ=ξ(πˆX′∪Xk)−ξ(πˆX′).

A test for the equality of the two Lorenz Zonoids, can thus be developed by setting

the following hypothesesH0:ξ(YˆX′∪Xk)=ξ(YˆX′)vsH1:ξ(YˆX′∪Xk)≠ξ(YˆX′).

To proceed with the test, ξ(YˆX′∪Xk) can be derived in terms of a U-statistic, U1,

which estimates Cov(YˆX′∪Xk,

F(YˆX′∪Xk)). The estimator is defined

as:ξˆ(YˆX′∪Xk)=U1=14n2∑i=1n(2i−1−n)YˆX′∪Xk(i),where YˆX′∪Xk(i) is the ith

order statistic of YˆX′∪Xk1,…,

YˆX′∪Xkn.

Similarly, the estimator of ξ(YˆX′) is U2, specified

as:ξˆ(YˆX′)=U2=14n2∑i=1n(2i−1−n)YˆX(i)′,where YˆX(i)′ is the ith order statistic

of YˆX1′,…,

YˆXn′.

An estimator of γ=ξ(YˆX′∪Xk)−ξ(YˆX′) can then be provided as a function of two
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dependent U-statistics:(13)γˆ=ξˆ(YˆX′∪Xk)−ξˆ(YˆX′)=U1−U2.

Based on Hoeffding (1948), a function of several dependent U-statistics has, after

appropriate normalisation, an asymptotically normal distribution. As suggested

by Schechtman et al. (2008), a way to estimate the variance is to resort to the

jackknife method. Specifically, the n values of γˆ, pointed out

with γˆ(−i) (where i=1,…,n), are calculated by omitting one pair (YˆX′∪Xk,YˆX′) at

a time and the estimated variance is

Download: Download high-res image (84KB)
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where γ̄ is the average of γˆ(−i), for i=1,…,n.

Following the previous derivations, the null hypothesis H0:ξ(YˆX′∪Xk)=ξ(πˆX′) can

be tested by the test statistic:(14) and, for a given selected significance level α, a

rejection region for the null hypothesis H0 can be defined as |Z|≥zα2.
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